digitalhealth

Deep dive: Al in clinical imaging and diagnostics, progress so far

Dr Amrita Kumar

Consultant Radiologist & Clinical Lead AI Frimley Health NHS FT

Dr Kiruba Nagaratnam

Clinical Lead for Stroke Medicine Royal Berkshire NHS FT

Dr Mathieu Bottier

Thoracic Research Associate Royal Brompton and Harefield Hospitals

Chair: Dr Matthew Lee

Internal Medicine Doctor University College London Hospitals NHS FT

Supported by:

Headline sponsor

#AIDATA23

Digital Transformation of the Acute Stroke Pathway Using Al

Dr Kiruba Nagaratnam

Consultant Stroke Physician & ISDN Clinical Lead for Stroke The Royal Berkshire NHS Foundation Trust

The Burden of Stroke

- 1 stroke every 5 minutes
- 100,000 strokes per annum
- 38,000 deaths per year
- Estimated to cost the NHS around £3billion per year

Mechanical Thrombectomy

Mechanical Thrombectomy Pathway

Door-in-door-out time (DIDO)

Mechanical Thrombectomy

10% of stroke patients eligible

AI Enabled Mechanical Thrombectomy Pathway

Door-in-door-out time (DIDO)

Instant Access and Faster Decision

Assesses the non-contrast CT scan for early signs of stroke

Indicates occluded vessel

e-CTA identifies large vessel occlusion

Trebling of Better Functional Outcome for Patients

Door-in-door-out time

Reduced from 140 minutes to 79 minutes (p < 0.01)

Door-in to referral time

Reduced from 70 minutes to 44 minutes (p < 0.05)

Patients achieving independence

Increased from 16% to 48% (p < 0.05)

	Admission	Referred	Transferred
Before-AI	846	22	19
After-Al	785	25	21

Your ASC — England ASC average

NHS Impact: Blueprint for Adoption at Scale

The Artificial Intelligence in Health and Care Award

Real world evaluation of e-Stroke

Key Enablers

- 1. National Stroke Service Model
- 2. NHS Health and Care Awards
- 3. System leadership and networking

National Optimal Stroke Imaging pathway

Challenges

- Stakeholder scepticism
- Navigating Information Governance
- Funding

Future Direction

- Sustain the gains beyond the NHS AI award
- Generate robust evidence to support NICE appraisal
- Working together to advance the technology

Thank You!

Royal Brompton and Harefield hospitals

Guy's and St Thomas'

PCD-AID: Artificial Intelligence Diagnosis of Primary Ciliary Dyskinesia

30-31 OCTOBER 2023 BUSINESS DESIGN CENTRE, LONDON DIGITALHEALTHAIDATA.COM

National Institute for Health and Care Research

Mathieu Bottier, PhD m.bottier@rbht.nhs.uk @mathieu_bottier

Primary ciliary dyskinesia (PCD)

- Prevalence 1:7500
- Multi-system disease
- Primarily autosomal recessive [rarely X-linked & AD]
- > 50 known PCD mutations
- 74% of cases can be confirmed using genetics
- Clinical spectrum of severity across a common phenotype:
 - oto-sinus disease, chronic suppurative lung disease and reduced fertility [motile cilia]
 - organ laterality defects in approximately 50% of patients [embryonic nodal cilia]

Cilia function and dynamics

Diagnosis of PCD: microscopy techniques

Royal Brompton and Harefield hospitals

High speed video microscopy (HSVM)

Structural defect

DNAH5

Immunofluorescence Microscopy (IF)

Loss of function

Diagnosis of PCD by TEM – ultrastructure defects

Cilium components

Diagnosis of PCD by TEM – requires expertise and time

Machine learning computer vision

Royal Brompton and Harefield hospitals Machine learning offers an opportunity to improve diagnostic accuracy, reduce time to analyse samples, minimise the subjective element and significantly reduce costs.

Intel[®] Geti[™] Model: Deep Learning Model Details

Object Detection

Model Architecture: Adaptive Training Sample Selection

Automatically adjusts positive and negative training samples based on the statistical characteristics of the object.

Backbone: MobileNet-V2

Ref: Zhang et. al., https://arxiv.org/pdf/1912.02424 Sandler et. al., https://arxiv.org/abs/1801.04381

Image Classification

Model Architecture: EfficientNet-V2

Training aware NAS search, adjusted depth-wise convolutions across layers.

Backbone: EfficientNet

Ref: Tan et. al., https://arxiv.org/pdf/2104.00298

intel. GeTi

intel. GeTi

Training: 22,078 cilia

Detection of well-orientated cilia

Intel[®] Geti[™] Model: Primary Classification

intel.

Geti

Training: 9,190 cilia

Intel[®] Geti[™] Model: Defects Classification

intel.

Geti

Intel[®] Geti[™] Model: Defects Classification

PCD-AID: Artificial Intelligence Diagnosis of PCD

After satisfactory training & testing, the model can be **deployed** (Geti-SDK OpenVINO[™] Toolkit in Python 3.8) and used for the **Artificial Intelligence Diagnosis** of patients using the PCD International consensus algorithm.

An **automatically generated report** includes:

- Number of cilia detected (normal, abnormal & unusable)
- Percentage of abnormal cilia
- List of defects classified

Annotated cropped cilia images

EUROPEAN RESPIRATORY journal

A I 🕂 DATA

FLAGSHIP SCIENTIFIC JOURNAL OF ERS

International consensus guideline for reporting transmission electron microscopy results in the diagnosis of Primary Ciliary Dyskinesia (BEAT PCD TEM Criteria)

Amelia Shoemark, Mieke Boon, Christoph Brochhausen, Zuzanna Bukowy-Bieryllo, Maria Margherita De Santi, Patricia Goggin, Paul Griffin, Richard G. Hegele, Robert A. Hirst, Margaret W. Leigh, Alison Lupton, Karen MacKenney, Heymut Omran, Jean-Claude Pache, Andreia Pinto, Finn P. Reinholt, Josep Schroeder, Panayotis Ylallouros, Estelle Escudier

Please cite this article as: Shoemark A, Boon M, Brochhausen C, et al. International consensus guideline for reporting transmission electron microscopy results in the diagnosis of Primary Ciliary Dyskinesia (BEAT PCD TEM Criteria). *Eur Respir J* 2020; in press (https://doi.org/10.1183/13993003.00725-2019).

PCD-AID: Validation

178 patients included at PCD diagnostic referral

		MDT specialists diagnostic					
		PCD Likely	PCD Unlikely	Non-PCD	Inconclusive	Total	
	PCD Likely	13	1	1	0	15	
esult	PCD Unlikely	0	4	14	0	18	
PCD-AID r	Non-PCD	1	2	134	0	137	
	Inconclusive	0	0	2	6	8	
	Total	14	7	151	6	178	

	Specialists	PCD-AID
Sensitivity	0.89	0.87
Specificity	0.83	0.88

- Alternative to manual diagnosis
- PCD-AID assesses TEM images in under 30 seconds per patient

Implementing **computer vision artificial intelligence** in **the diagnostic pathway** can improved **diagnosis of PCD**, **reduce cost** by saving expert time and **bring the diagnosis to center lacking expertise**.

Next steps:

Deployment of PCD-AID to additional centers to test the model on images from different sources (first within the UK).

Intel[®] Geti[™] & other diagnosis tests

High speed video microscopy (HSVM)

Normal pattern

Reduced beat amplitude

(Virtually) Immotile

Circular/wavy motion

Immunofluorescence Microscopy (IF)

Acknowledgements

- Prof Claire Hogg •
- Dr Tom Burgoyne •
- Prof Amelia Shoemark .
- Dr Andreia Pinto •
- Ranjit Rai •

Royal Brompton and Harefield hospitals

- Mellisa Dixon
- **Emily Howieson**
- Farheen Daudvohra
- **Dr Andrew Rogers**

intel

- Dr Oliver Hamilton ٠
- Dr Ioannis Katramados ٠
- Britt van Akker ٠

Imperial College London

Prof Jane Davies

Mathieu Bottier, PhD (\boxtimes) m.bottier@rbht.nhs.uk (\mathbb{X}) @mathieu_bottier

inte

FUNDED BY National Institute for Health and Care Research

30-31 OCTOBER 2023 **BUSINESS DESIGN CENTRE, LONDON** DIGITALHEALTHAIDATA.COM

digitalhealth

Deep dive: Al in clinical imaging and diagnostics, progress so far

Dr Amrita Kumar

Consultant Radiologist & Clinical Lead AI Frimley Health NHS FT

Dr Kiruba Nagaratnam

Clinical Lead for Stroke Medicine Royal Berkshire NHS FT

Dr Mathieu Bottier

Thoracic Research Associate Royal Brompton and Harefield Hospitals

Chair: Dr Matthew Lee

Internal Medicine Doctor University College London Hospitals NHS FT

Supported by:

Headline sponsor

#AIDATA23